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Abstract A simple robust “strut algorithm” is presented which, when given a graph embedded in 3D space, thickens its
edges into solid struts. Various applications, crystallographic and sculptural, are shown in which smooth high-genus forms
are the output. A toolbox of algorithmic techniques allow for a variety of novel, visually engaging forms that express a
mathematical aesthetic. In sculptural examples, hyperbolic tessellations in the Poincaré plane are transformed in several
ways to three-dimensional networks of edges embodied within a plausibly organic organization. By the use of different
transformations and adjustable parameters in the algorithms, a variety of attractive forms result. The techniques produce
watertight boundary representations that can be built with solid freeform fabrication equipment. The final physical output
satisfies the “coolness criterion,” that passers by will pick them up and say “Wow, that’s cool!”
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1 Introduction

As a sculptor, I am interested in creating physical
objects that are novel, natural, strongly self-coherent,
and convey a sense of “structural inevitability.” In my
work, I use a variety of mathematical ideas and physi-
cal materials[1]. The motivation for the work presented
below is to realize visions for structures that are similar
to forms in the echinoderm family, but happen not to
exist in nature. The algorithms are used to produce
boundary representations that are physically realized
via solid freeform fabrication techniques. Accordingly,
the generating algorithms must be robust enough to
produce “watertight” triangulated boundary represen-
tations consisting of one connected manifold.

Two basic ideas are repeatedly employed below.
First, hyperbolic tessellations in the Poincaré plane are
transformed (in various ways) to three-dimensional net-
works of edges. Then these edge networks are thickened
to solid struts with a simple robust “strut algorithm”.
To illustrate its versatility, the strut algorithm is also
applied to produce interesting crystallographic models.
A variety of high-genus forms result, due to the use of
different transformations and a number of adjustable
parameters in the algorithms.

2 Strut Algorithm

The input is a graph embedded in 3D space, i.e.,

(x, y, z) coordinates have been assigned to each vertex.
We understand each edge as a line segment connecting
the incident vertices and we assume the embedding does
not intersect itself anywhere. There are many ways to
transform an embedded graph into a 3D form. One idea
is to create a small sphere around each vertex, create
a cylinder around each edge, and take the 3D Boolean
union of these components. If the spheres and cylin-
ders are not too large, there will be no intersections,
so the surface is a manifold. But this approach faces
a familiar practical problem that 3D Boolean unions
can be numerically difficult when intersecting boundary
representations with floating point vertex coordinates.
Given thousands of spheres and cylinders to combine,
some unions will fail with currently available commer-
cial software, and a watertight boundary representation
is unlikely to result. More fundamentally, the resulting
“ball and stick” structure gives a visual impression of
a chemical or mathematical model — a different aes-
thetic than I am after, and a single connected surface
is required for the final smoothing operations.

The 3D forms presented here all involve an algorithm
that generates a high-genus surface that wraps around
all the edges, as a ball-and-stick model does, but re-
quires no Boolean unions and has a more controllable
geometry. It is similar to the algorithm described in
[2] but it is more adaptable and experiments show it
is more robust. Some of the examples below resulted
in invalid meshes (having intersecting polygons) using
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the older algorithm, which led to this new approach.
The algorithm is presented in the context of particu-
lar sculptural forms, but it applies to any sets of seg-
ments embedded in general position in three-space. Al-
though simple and straightforward, I have not seen a
similar algorithm described elsewhere, so it is worth
documenting, as converting from edges to solid struts
is a frequently requested operation. Experiments with
a wide range of segment topologies, angles, and lengths
indicate the algorithm is very robust.

Fig.1. Output of strut algorithm for 500-triangle bunny model.

Fig.1 provides an illustrative example. The Stanford
bunny model was simplified to 500 triangles, and then
the edges of the triangles were used as input to the strut
algorithm. The output is a watertight set of triangles
which is the boundary of a solid network of connected
struts that wraps around the bunny edges. The proce-
dure is simple and fast enough that it could be made
available as a standard operator in 3D design software
(e.g., Maya, Rhinoceros, or AutoCAD) for creating in-
teresting solid forms.

The geometric input to the algorithm is a list of ver-
tices, given as (x, y, z) coordinates, and a list of in-
dex pairs indicating which vertices are joined by edges.

Then for each end of each edge, the vertices of a regu-
lar polygon that encircles the edge are created. For
each polygon, the radius, number of vertices, rotational
“phase,” and the position along the edge are control-
lable parameters, as described below. Fig.2(a) indicates
the polygons as triangles around the four edges that
meet at one vertex. Taking the convex hull of these
vertices gives facets of a “ball” wrapping the vertex,
shown in Fig.2(b). The faces normal to the edges are
dropped, so there is a hole for each of the original poly-
gons. Then for each edge, take the convex hull of the
polygons at the two ends of the edge. Again, dropping
the facets normal to the edge leaves facets of a “strut”
wrapping the edge shown in Fig.2(c). Finally, combine
all these facets — from every vertex and every edge —
into one set to obtain a complete boundary representa-
tion. The algorithm is fast because it mainly consists
of small convex hull operations and orthogonality tests.
The result is watertight because the same polygon ver-
tices are used both for vertex wrapping and for edge
wrapping.

Using triangles, as illustrated in Fig.2, gives a low
face count for a high-genus object. In the examples
below, n-gons are used, with 6 6 n 6 12, for rounder
appearing struts. The distance from the polygons to
the vertices is chosen to ensure the polygons do not
overlap. The minimum angle between edges at a ver-
tex is found, which determines the radius of a sphere
on which the polygons are placed. Half the length of
the shortest incident edge is the radius upper bound,
guaranteeing adjacent balls do not overlap.

Fig.2(d) illustrates a fine point of the algorithm.
When the convex hull of the polygons around each ver-
tex is constructed, the vertex itself is also included as
an input point. In most cases, this has no effect on the
result, as the vertex is usually interior to the hull of the
edge-surrounding polygons. However, if the edges all

Fig.2. Strut algorithm. (a) A polygon is created around each end of each segment, illustrated here as triangles. (b) For each vertex,

the convex hull of the nearby polygons and the vertex is constructed, but then the polygons themselves are removed from the hull.

Typically the vertex is inside the hull and does not appear in the result. (c) For each edge, the convex hull of its two polygons is

constructed, and again the two polygons are removed from the hull. (d) In Step (b), the vertex itself is sometimes part of the result,

when the incident edges happen to lie in one hemisphere.
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lie in an acute cone, the center of the sphere is part of
the output hull, and appears as the apex of the struts
meeting at that vertex.

3 Crystallographic Examples

To demonstrate the versatility of the strut algorithm,
we first apply it to some complex regular lattices which
are very interesting to hold in the hand and study as
physical models. Fig.3(a) shows a portion of the dia-
mond crystal lattice in a standard ball and stick chemi-
cal model form. Each sphere represents a carbon atom,
which bonds to four surrounding neighbors. Fig.3(b)
shows a 4cm plastic model of the same structure, gen-
erated by the strut algorithm, which made a smooth
surface around the embedded edges. The model is made
of nylon on a Selective Laser Sintering (SLS) machine.

One beautiful property of the diamond lattice is that
there is space inside it for another copy of itself. Apply-
ing the strut algorithm to the “double diamond” lattice
gives two independent intertwined networks, as seen in
Fig.4(a). When produced by SLS, the two components
of Fig.4(b) fit in the same 4cm cubic volume, and can
be moved slightly, independently of each other. This

Fig.3. Diamond lattice. (a) Traditional ball and stick model. (b)

4cm SLS model output of strut algorithm.

Fig.4. Double Diamond lattice. (a) Computer rendering. (b)

4cm SLS model output of strut algorithm.

Fig.5. (10, 3)-a network. (a∼d) Four views of the 8cm SLS model

output of strut algorithm.

Fig.6. Doubled (10, 3)-a network. (a) Computer rendering. (b∼c) Two views of the 8cm SLS model output of strut algorithm.
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structure occurs in a sodium-thallium alloy, where the
sodium atoms take the positions of the carbons of one
diamond lattice and the thallium atoms take the posi-
tions of the carbons of the other diamond lattice[3].

Another interesting lattice is the “(10, 3)-a” net-
work shown in Fig.5[4]. The history and geometry of
this fascinating structure are summarized in [5]. Figs.
5(a)∼5(d) show four views of an 8cm model of the struc-
ture, as generated by this strut algorithm. There are
many different aspects to it when projected in different
directions.

Most interestingly, Wells[4] observed that the “(10,
3)-a” lattice can interpenetrate space with a copy of its
mirror image. Fig.6(a) shows a rendering to clarify that
there are two independent components. Figs. 6(b) and
6(c) show two views of this immensely complex inter-
locked structure, as produced by the strut algorithm.
Again, the two parts are free to wiggle slightly.

4 Sculpture Examples

The following examples all begin with a hyperbolic
tessellation, map its edges in some way to segments
embedded in three-space, use the strut algorithm to
form a high-genus manifold boundary wrapping around
the struts, and apply some sort of smoothing. They

are motivated by an underwater aesthetic, but are not
meant to imply that the techniques are limited to this.

We begin with some background on hyperbolic tes-
sellations. Fig.7 shows several hyperbolic tessellations
in the Poincaré disk[6,7]. The first is the {7, 7, 7} tes-
sellation, which means that at each vertex three regu-
lar heptagons meet. As the sum of the angles around
each vertex is greater than 360, this tessellation can-
not be constructed in the Euclidean plane. However, it
is straightforwardly constructed with regular heptagons
in the hyperbolic plane and then can be mapped to the
Euclidean unit disk in various ways. In Fig.7(a), the
center of a polygon is the center of the disk, while for
Fig.7(b) a translation in the hyperbolic plane was ap-
plied, so the identical hyperbolic tessellation is mapped
to the disk in a way that displays a vertex at the center.

Each hyperbolic tessellation in Fig.7 is “vertex uni-
form”, which means each is specifiable by the cyclic
configuration of regular polygons around each vertex.
In all the examples presented, the Poincaré mapping
is used to transform from the hyperbolic plane to the
unit disk in Euclidean space. This mapping transforms
geodesic lines in hyperbolic space to circular arcs or-
thogonal to the edges of the disk. Note that tessella-
tions may be chiral, e.g., Fig.7(f). An infinite amount
of complexity appears within epsilon of the circular

Fig.7. Some uniform hyperbolic tessellations in the Poincaré plane. (a) {7, 7, 7}. (b) {7, 7, 7}. (c) {7, 6, 6}. (d) {3, 3, 3, 3, 3, 3, 3}.
(e) {5, 4, 5, 4}. (f) {5, 3, 4, 3, 3}.
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boundary, so each tessellation is truncated to show
only a selectable number of polygons around the center.
Other mappings, particularly the Klein disk and upper
half-plane model could be used in similar ways for cre-
ating three-dimensional forms in Euclidean space, but
the Poincaré model was selected for its aesthetic prop-
erties.

By selecting a tessellation and a translation, we have
available visually interesting geometric structures with
various radial symmetries. Although there are only
finitely many uniform tessellations in the Euclidean
plane, there are infinitely many uniform tessellations
in the hyperbolic plane. So one is not likely to quickly
run out of interesting patterns. There are many vari-
eties of nonuniform tessellations that may be considered
in future work.

Several artists have used hyperbolic tessellations as
a foundation for artistic design, most famously M. C.
Escher[8]. Recent examples, usually two-dimensional,
can be found in the artwork of Douglas Dunham, Hele-
man Ferguson, Craig Kaplan, Irene Rousseau, and
Carlo Sequin, among others[9]. A series of novel ap-
proaches for adapting the edges of hyperbolic tessella-
tions into three-dimensional forms are presented below.

4.1 “Sand Dollars”

Fig.8(a) shows the application of this algorithm to
the tessellation of Fig.7(a). Note how the thickness of
the disk tapers towards the edges. In the applications
illustrated here, the edge-encircling polygons’ radii are
chosen at each vertex to be proportional to the average
length of the edges meeting at that vertex. The struts
then are thicker in proportion to their length, approxi-
mating a constant aspect ratio, but smoothly varying
from the larger regions to the smaller regions, which is
important in giving a sense of organic form. Fig.8(a)
uses triangular struts, which give a low facet count and
a more chiseled angular look, while Fig.8(b) shows four-
sided struts and the thickness parameter (polygon ra-
dius scaling factor) is increased. In Fig.8(c), 12-gons
were used instead of triangles, so the struts appear effec-
tively circular. Fig.8(d) shows the result using 6-gons,
then applying standard polygon subdivision smoothing
techniques in a post-processing step to soften the form.
Smoothing is similarly applied in other examples below.

Fig.9 shows four examples of physical models made
of nylon on a Selective Laser Sintering (SLS) machine.
The flat white color and tapering perforated disk form
is suggestive of a “sand dollar” but with a more inter-
esting pattern of openings. Some of the smallest edge
details in the geometry description file are too fine to
be built given the resolution of the SLS machine. So

Fig.8. Visualizations of “Sand Dollars” based on {7, 7, 7} tes-

sellation. (a) Triangular struts. (b) Square struts and greater

thickness. (c) 12-gon struts. (d) 6-gon struts with subdivision

smoothing.

Fig.9. Sand Dollars, nylon, SLS, 6 inch diameter. (a) {7, 7, 7}.
(b) {3, 3, 3, 3, 3, 3, 3}. (c) {5, 4, 5, 4} thin. (d) {5, 4, 5, 4}
thick.

the edges are frayed in places, adding to their impres-
sion of being a natural artifact. Observe that Figs.9(c)
and 9(d) are based on the same {5, 4, 5, 4} tessellation
but differ in the strut thickness, illustrating how the
strut algorithm allows the designer to adjust between a
linear and a bulbous visual impression.
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4.2 Parabolic Polyp

The “sand dollars” above are effectively sculptural,
but almost two-dimensional. For a stronger 3D im-
pact, the hyperbolic tessellation can be lifted out of the
plane. Introducing a height function, f(x, y) defined
on the unit disc allows a variety of 3D designs. For the
“sand dollars,” each (x, y) point of the Poincaré disk
was mapped to a point (x, y, 0) to embed the plane in
3D. The next simplest idea is to use an arbitrary height
function and map (x, y) to (x, y, f(x, y)).

Fig.10(a) shows a design based on the vertex-
centered {7, 7, 7} tessellation of Fig.7(b), but with a
height function that is parabolic in r =

√
(x2 + y2):

rising, reaching a maximum at radius R, then starting
to descend. Specifically, the height was chosen to be
proportional to 1 − ((r − R)/R)2, with R = 0.6. As
illustrated, triangular struts were used, so the form has
an architectural feeling. It would make a dramatic de-
sign for a pavilion. Fig.10(b) shows a physical model

made on an SLS machine.

Fig.10. Parabolic Polyp. (a) Visualization. (b) Realization, ny-

lon, SLS, 6-inch diameter.

4.3 Helical Sweeps

Considering the Poincaré disk in polar coordinates,
(r, θ), we can sweep around it k times, letting θ vary
from 0 to 2kπ. Choosing a height function linear in θ,
i.e., of the form αθ, results in a springy helix, as seen in
Fig.11(a). Its projection to the XY plane is the same

Fig.11. Helical forms. (a) Simple helix applied to {3, 3, 3, 3, 3, 3, 3}. (b) Side view of a helix proportioned to fit in a sphere. (c) {5,
3, 4, 3, 3} realization, nylon, SLS, 4-inch diameter. (d) {7, 6, 6} realization, nylon, SLS, 4-inch diameter.
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Fig.12. Toroidal forms, nylon, SLS, 3-inch diameter, hand dyed. (a) {5, 4, 5, 4}. (b) {7, 6, 6}.

as that of Fig.9(b). This can be seen as a multiple cov-
ering of the Poincaré disk, tiled to be uniform at almost
all vertices, but there is one unbounded polygon at the
center with infinitely many sides.

For greater visual interest, such a helix could be
scaled radially as well, e.g., to make nautilus-like coni-
cal forms, based on, e.g., an Archimedean or equiangu-
lar spiral. A different outer form was chosen here: the
height is scaled as sin(αθ) and the radius is scaled as
cos(αθ), so that the form nestles inside a sphere when
θ varies from −2kπ to +2kπ. Fig.11(b) shows a side
view, to illustrate how it fits in a circle.

Figs. 11(c) and 11(d) show two sculptures based on
this idea, using the {5, 3, 4, 3, 3} and {7, 6, 6} tessella-
tions, respectively. They give a sense of being at home
among the seaweed. I hand-dyed the nylon SLS models
in Fig.6 with a radial color gradient. For this family
of forms, a color gradient adds to the naturally organic
impression and provides contrast and depth cues that
make it easier to apprehend the 3D form from a 2D
image.

4.4 Toroidal Sweeps

Extending the above idea, the sweep can be trans-
formed to wrap around a point moving in a circle, creat-
ing a toroidal form with a spiral swirl. Mathematically,
this is accomplished with standard rotating Frenet
frame techniques parameterized by the sweep angle
θ. As an example, Fig.12 shows two such sculptures.
The first example is based on the {5, 4, 5, 4} tessella-
tion wrapping five times around a torus. The second is
based on the {7, 6, 6} tessellation wrapping seven times
around a torus. These display a 5-fold and a 7-fold ra-
dial symmetry respectively, when viewed straight down
from the top. Again, I hand-dyed them with a gradient
color scheme as a simple way to artistically emphasize

their organic nature. The results impress the viewer as
simultaneously naturalistic yet alien.

4.5 Knotted Sweep

To produce a topologically intriguing object, the
toroidal sweep can be replaced with a sweep with a
frame rotating about a knotted path. Fig.13 shows an
unsmoothed and as-yet unrealized design for a knotted
form with nine cycles based on the {7, 6, 6} tessella-
tion. Its sweep path is the simplest knotted path: a
trefoil knot. The frequency and phase of the rotation
was chosen so that the sculpture has a three-fold rota-
tional symmetry axis. Repeated experimentation was
necessary to find parameters which resulted in no self-
intersections.

4.6 Polyhedral Forms

The final technique presented here is to take an
angular wedge of the Poincaré disk and use it to build

Fig.13. Knotted Kelp, visualization.
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Fig.14. Cube’s twelve edges re-

placed by circular sectors.

Fig.15. Polyhedral forms based on {5, 4, 5, 4}, nylon, SLS, 4-inch diameter. (a) Icosahedral.

(b) Dodecahedral.

spherical forms based on the edges of a polyhedron.
A polyhedron edge subtends some angle when viewed
from the center of the polyhedron. A circular segment
of the same angle can fit into that angular space, as
illustrated in Fig.14 for the twelve edges of a cube. In
place of each circular wedge, we can use a sector of a
tessellation in the Poincaré plane, to create an arrange-
ment of segments. To maintain the polyhedral sym-
metry, the wedge in the Poincaré plane should have
mirror symmetry and be of size 2π/n if the tessella-
tion has n-fold symmetry. Note that the wedges we use
and the original edges of the polyhedron need not span
the identical central angle, because we can apply lin-
ear interpolation in θ as part of the mapping. So any
size wedge of the Poincaré plane might be used, but to
minimize distortion, one can select a symmetric wedge
close in angle to the edge being replaced.

For a richer form, we use an icosahedron and dodec-
ahedron instead of a cube in the examples presented
here. Two sculptures, both based on a wedges of the
{5, 4, 5, 4} tessellation, are shown in Fig.15. Again, a
radial color gradient was hand applied. These deli-
cate frameworks are in some ways reminiscent of Ernst
Haeckel’s drawings of microscopic life forms.

5 Implementation

The algorithms described above were coded using
Mathematica, which provides a convenient library of
primitive functions but is not a high-performance en-
vironment. As currently coded — for the author’s ex-
perimental development rather than with efficient data
structures — the more complex examples required sev-
eral minutes to generate on a laptop PC. Careful recod-
ing using a compiled language should reduce the exe-
cution time by a significant factor. A library of Math-
ematica functions for creating hyperbolic tessellations
was used as the starting point[10]. Post-processing with

Maya was used for subdivision smoothing.

6 Conclusion

A robust toolbox with adjustable parameters is used
to produce a variety of visually interesting 3D de-
signs, suitable for building on solid freeform fabrica-
tion equipment. By wrapping surfaces around segments
in a water-tight manner, high-genus sculptures are
generated which have both a mathematical structure
and an organic character. Algorithmically generated
sculptural forms were presented which incorporate pat-
terns based on tessellations of the hyperbolic plane. As-
sorted transformations are used to map the Poincaré
disk to 3D objects. Their organic feel (and engineering
strength) results in part from strut diameters that are
proportional to length.

There is no objective correctness criterion for this
type of design. The final sculptures are considered to be
successful if they pass the “coolness test”, that passers
by stop and say “Wow, that’s cool!” then pick them
up and turn them about in their hands to view them
from many angles. By that criterion, this work has been
observed to be successful.

As a successful sculpture is difficult to capture from
only one camera position, the images may not convey
a complete sense of each form. The reader is invited
to download the 3D models available at the website[11]

and explore them in a 3D viewer, or better, build them
on a local fabrication machine.

Acknowledgment Thank Jim Quinn for the SLS
production.
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