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ABSTRACT 
A toolbox of algorithmic techniques is presented for creating a 
variety of novel, visually engaging, sculptural forms that express 
a mathematical aesthetic embodied within a plausibly organic 
organization. Hyperbolic tessellations in the Poincaré plane are 
transformed in several ways to three-dimensional networks of 
edges. Then these edge networks are thickened to solid struts with 
a simple robust “strut algorithm”. By the use of different 
transformations and adjustable parameters in the algorithms, a 
variety of high-genus forms result. The techniques are robust 
enough to produce watertight boundary representations to be built 
with solid freeform fabrication equipment. The final physical 
sculptures satisfy the “coolness criterion,” that passers by will 
pick them up and say “Wow, that’s cool!”   

Categories and Subject Descriptors 
J.5 [Computer Applications]: Arts and Humanities – fine arts. 
J.6 [Computer-Aided Engineering]: Computer-Aided Design.  

General Terms 
Algorithms. 

Keywords 
Sculpture, solid modeling, echinoderm. 

1. INTRODUCTION 
As a sculptor, I am interested in creating physical objects that are 
novel, natural, strongly self-coherent, and convey a sense of 
“structural inevitability.” In my work, I use a variety of 
mathematical ideas and physical materials [4]. The motivation for 
the designs presented below is to realize visions for structures that 
are similar to forms in the echinoderm family, but happen not to 
exist in nature. The algorithms are used to produce boundary 
representations that are physically realized via solid freeform 
fabrication techniques. Accordingly, the generating algorithms 
must be robust enough to produce “watertight” triangulated 
boundary representations consisting of one connected manifold.  
Two basic ideas are repeatedly employed below. First, hyperbolic 
tessellations in the Poincaré plane are transformed (in various 
ways) to three-dimensional networks of edges. Then these edge 
networks are thickened to solid struts with a simple robust “strut 

algorithm”. A variety of high-genus forms result, due to the use of 
different transformations and a number of adjustable parameters 
in the algorithms.  

  

  

  
Figure 1. Some uniform hyperbolic tessellations in the 
Poincaré plane. (a) {7,7,7}, (b) {7,7,7}, (c) {7,6,6}, (d) 
{3,3,3,3,3,3,3}, (e) {5,4,5,4}, (f) {5,3,4,3,3}. 

2. HYPERBOLIC TESSELLATIONS 
Figure 1 shows several hyperbolic tessellations in the Poincaré 
disk. [1, 2] The first is the {7,7,7} tessellation, which means that 
at each vertex three regular heptagons meet. As the sum of the 
angles around each vertex is greater than 360, this tessellation can 
not be constructed in the Euclidean plane. However, it is 
straightforwardly constructed with regular heptagons in the 
hyperbolic plane and then can be mapped to the Euclidean unit 
disk in various ways. In Figure 1a, the center of a polygon is the 
center of the disk, while for Figure 1b a translation in the 
hyperbolic plane was applied, so the identical hyperbolic 
tessellation is mapped to the disk in a way that displays a vertex 
at the center.  
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Each hyperbolic tessellation in Figure 1 is “vertex uniform” 
which means each is specifiable by the cyclic configuration of 
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regular polygons around each vertex. In all the examples 
presented, the Poincaré mapping is used to transform from the 
hyperbolic plane to the unit disk in Euclidean space. This 
mapping transforms geodesic lines in hyperbolic space to circular 
arcs orthogonal to the edges of the disk. Note that tessellations 
may be chiral, e.g., Figure 1f. An infinite amount of complexity 
appears within epsilon of the circular boundary, so each 
tessellation is truncated to show only a selectable number of 
polygons around the center. Other mappings, particularly the 
Klein disk and upper half-plane model could be used in similar 
ways for creating three-dimensional forms in Euclidean space, but 
the Poincaré model was selected for its aesthetic properties. 
By selecting a tessellation and a translation, we have available 
visually interesting geometric structures with various radial 
symmetries. Although there are only finitely many uniform 
tessellations in the Euclidean plane, there are infinitely many 
uniform tessellations in the hyperbolic plane. So one is not likely 
to quickly run out of interesting patterns. There are many varieties 
of nonuniform tessellations that may be considered in future 
work. 
Several artists have used hyperbolic tessellations as a foundation 
for artistic design, most famously M. C. Escher [7]. Recent 
examples, usually two-dimensional, can be found in the artwork 
of Douglas Dunham, Heleman Ferguson, Craig Kaplan, Irene 
Rousseau, and Carlo Sequin, among others [3]. A series of novel 
approaches for adapting the edges of hyperbolic tessellations into 
three-dimensional forms are presented below. 

3. STRUT ALGORITHM 
Given a tessellation mapped to the Poincaré disk, there are many 
ways to transform it into a 3D form. One idea is to embed the 
plane in 3-space, create a small sphere around each vertex, create 
a cylinder around each edge, and take the 3D Boolean union of 
these components. This approach faces a familiar technical 
problem that 3D Boolean unions can be numerically difficult 
when intersecting boundary representations with floating point 
vertex coordinates. Given thousands of spheres and cylinders to 
combine, some unions will fail with currently available com-
mercial software, and a watertight boundary representation is 
unlikely to result. But more fundamentally, the resulting “ball and 
stick” structure gives a visual impression of a chemical or math-
ematical model—a different aesthetic than I am after, and a single 
connected surface is required for the final smoothing operations.  
The 3D forms presented here all involve an algorithm that 
generates a high-genus surface that wraps around all the edges, as 
a ball-and-stick model does, but requires no unions and has a 
more controllable geometry. It is similar to the algorithm 
described in [5] but it is more adaptable and experiments show it 
is more robust. Some of the examples below resulted in invalid 
meshes (having intersecting polygons) using the older algorithm, 
which led to this new approach. The algorithm is presented in the 
context of particular sculptural forms, but it applies to sets of 
segments embedded in general position in three-space.  Although 
simple and straightforward, I have not seen a similar algorithm 
described elsewhere, so it is worth documenting, as converting 
from edges to solid struts is a frequently requested operation. 
Experiments with a wide range of segment topologies, angles, and 
lengths indicate the algorithm is very robust. 

The geometric input to the algorithm is a list of vertices, given as 
(x, y, z) coordinates, and a list of index pairs indicating which 
vertices are joined by edges. Then for each end of each edge, the 
vertices of a regular polygon that encircles the edge are created. 
For each polygon, the radius, number of vertices, rotational 
“phase,” and the position along the edge are controllable 
parameters, as described below. Figure 2a indicates the polygons 
as triangles around the four edges that meet at one vertex. Taking 
the convex hull of these vertices gives facets of a “ball” wrapping 
the vertex, shown in Figure 2b. The faces normal to the edges are 
dropped, so there is a hole for each of the original polygons. Then 
for each edge, take the convex hull of the polygons at the two 
ends of the edge.  Again, dropping the facets normal to the edge 
leaves facets of a “strut” wrapping the edge shown in Figure 2c. 
Finally, combine all these facets—from every vertex and every 
edge—into one set to obtain a complete boundary representation. 
The algorithm is fast because it mainly consists of small convex 
hull operations and orthogonality tests. The result is watertight 
because the same polygon vertices are used both for vertex 
wrapping and for edge wrapping.  

  

  
Figure 2. Strut algorithm. (a) A polygon is created around 
each end of each segment, illustrated here as triangles. (b) For 
each vertex, the convex hull of the nearby polygons and the 
vertex is constructed, but then the polygons themselves are 
removed from the hull. Typically the vertex is inside the hull 
and does not appear in the result. (c) For each edge, the 
convex hull of its two polygons is constructed, and again the 
two polygons are removed from the hull, (d) In step b, the 
vertex itself is sometimes part of the result, when the incident 
edges happen to lie in one hemisphere. 
Using triangles, as illustrated in Figure 2, gives a low face count 
for a high-genus object. In the examples below, n-gons are used, 
with 6≤n≤12, for rounder appearing struts. The distance from the 
polygons to the vertices is chosen to ensure the polygons do not 
overlap. The minimum angle between edges at a vertex is found, 
which determines the radius of a sphere on which the polygons 
are placed. Half the length of the shortest incident edge is the 
radius upper bound, guaranteeing adjacent balls do not overlap. 
Figure 2d illustrates a fine point of the algorithm. When the 
convex hull of the polygons around each vertex is constructed, the 
vertex itself is also included as an input point. In most cases, this 



has no effect on the result, as the vertex is usually interior to the 
hull of the edge-surrounding polygons. However, if the edges all 
lie in an acute cone, the center of the sphere is part of the output 
hull, and appears as the apex of the struts meeting at that vertex.  

4. EXAMPLES 
The following examples all begin with a hyperbolic tessellation, 
map its edges in some way to segments embedded in three-space, 
use the strut algorithm to form a high-genus manifold boundary 
wrapping around the struts, and apply some sort of smoothing. 
They are motivated by an underwater aesthetic, but are not meant 
to imply that the techniques are limited to this. 

4.1 “Sand Dollars” 
Figure 3a shows the application of this algorithm to the 
tessellation of Figure 1a. Note how the thickness of the disk 
tapers towards the edges. In the applications illustrated here, the 
edge-encircling polygons’ radii are chosen at each vertex to be 
proportional to the average length of the edges meeting at that 
vertex. The struts then are thicker in proportion to their length, 
approximating a constant aspect ratio, but smoothly varying from 
the larger regions to the smaller regions, which is important in 
giving a sense of organic form. Figure 3a uses triangular struts, 
which give a low facet count and a more chiseled angular look, 
while Figure 3b shows four-sided struts and the thickness 
parameter (polygon radius scaling factor) is increased. In Figure 
3c, 12-gons were used instead of triangles, so the struts appear 
effectively circular. Figure 3d shows the result using 6-gons, then 
applying standard polygon subdivision smoothing techniques in a 
post-processing step to soften the form. Smoothing is similarly 
applied in other examples below. 
Figures 4 shows four examples of physical models made of nylon 
on a Selective Laser Sintering (SLS) machine. The flat white 
color and tapering perforated disk form is suggestive of a “sand 
dollar” but with a more interesting pattern of openings. Some of 
the smallest edge details in the geometry description file are too 
fine to be built given the resolution of the SLS machine. So the 
edges are frayed in places, adding to their impression of being a 
natural artifact. Observe that Figure 4c and 4d are based on the 
same {5,4,5,4} tessellation but differ in the strut thickness, 
illustrating how the strut algorithm allows the designer to adjust 
between a linear and a bulbous visual impression. 

4.2 A Parabolic Polyp 
The “sand dollars” above are effectively sculptural, but almost 
two-dimensional. For a stronger 3D impact, the hyperbolic 
tessellation can be lifted out of the plane. Introducing a height 
function, f(x, y) defined on the unit disc allows a variety of 3D 
designs. For the “sand dollars,” each (x, y) point of the Poincaré 
disk was mapped to a point (x, y, 0) to embed the plane in 3D. 
The next simplest idea is to use an arbitrary height function and 
map (x, y) to (x, y, f(x, y)).  

 

 

 

 
Figure 3. Visualizations of “Sand Dollars” based on {7,7,7} 
tessellation. (a) Triangular struts. (b) Square struts and 
greater thickness. (c) 12-gon struts. (d) 6-gon struts with 
subdivision smoothing. 



  

 

 

 
Figure 4. Sand Dollars, nylon, SLS, 6 inch diameter. (a) 
{7,7,7}. (b) {3,3,3,3,3,3,3}. (c) {5,4,5,4} thin. (d) {5,4,5,4} thick. 

Figure 5a shows a design based on the vertex-centered {7,7,7} 
tessellation of Figure 1b, but with a height function that is 
parabolic in r = √(x2+y2): rising, reaching a maximum at radius R, 
then starting to descend.  Specifically, the height was chosen to be 
proportional to 1-((r-R)/R)2, with R = 0.6. As illustrated, 
triangular struts were used, so the form has an architectural 
feeling. It would make a dramatic design for a pavilion. Figure 5b 
shows a physical model made on an SLS machine. 
 

 

 
Figure 5. Parabolic Polyp. (a) Visualization. (b) Realization, 
nylon, SLS, 6 inch diameter. 
 

4.3 Helical Sweeps 
Considering the Poincaré disk in polar coordinates, (r, θ), we can 
sweep around it k times, letting θ vary from 0 to 2kπ. Choosing a 
height function linear in θ, i.e., of the form αθ, results in a springy 
helix, as seen in Figure 6a. Its projection to the XY plane is the 
same as that of Figure 4b. This can be seen as a multiple covering 
of the Poincaré disk, tiled to be uniform at almost all vertices, but 
there is one unbounded polygon at the center with infinitely many 
sides.  
For greater visual interest, such a helix could be scaled radially as 
well, e.g., to make nautilus-like conical forms, based on, e.g., an 
Archimedean or equiangular spiral. A different outer form was 
chosen here: The height is scaled as sin(αθ) and the radius is 
scaled as cos(αθ), so that the form nestles inside a sphere when θ 
varies from -2kπ to +2kπ. Figure 6b shows a side view, to 
illustrate how it fits in a circle.  

Figure 6c and 6d show two sculptures based on this idea, using 
the {5,3,4,3,3} and {7,6,6} tessellations, respectively. They give a 
sense of being at home among the seaweed. I hand dyed the nylon 



SLS models in Figure 6 with a radial color gradient. For this 
family of forms, a color gradient adds to the naturally organic 
impression and provides contrast and depth cues that make it 
easier to apprehend the 3D form from a 2D image. 

  

 

 
Figure 6. Helical forms. (a) Simple helix applied to 
{3,3,3,3,3,3,3}. (b) Side view of a helix proportioned to fit in a 
sphere. (c) {5,3,4,3,3} realization, nylon, SLS, 4 inch diameter. 
(d) {7,6,6} realization, nylon, SLS, 4 inch diameter. 

4.4 Toroidal Sweeps 
Extending the above idea, the sweep can be transformed to wrap 
around a point moving in a circle, creating a toroidal form with a 
spiral swirl. Mathematically, this is accomplished with standard 
rotating Frenet frame techniques parameterized by the sweep 
angle θ. As an example, Figure 7 shows two such sculptures. The 
first example is based on the {5,4,5,4} tessellation wrapping five 
times around a torus. The second is based on the {7,6,6} 
tessellation wrapping seven times around a torus. These display a 
5-fold and 7-fold radial symmetry respectively, when viewed 
straight down from the top. Again, I hand dyed them with a 
gradient color scheme as a simple way to artistically emphasize 
their organic nature. The results impress the viewer as 
simultaneously naturalistic yet alien. 

 

 

 
Figure 7. Toroidal forms, nylon, SLS, 3 inch diameter, hand 
dyed. (a) {5,4,5,4}. (b) {7,6,6}. 
 

4.5 Knotted Sweep 
To produce a topologically intriguing object, the toroidal sweep 
can be replaced with a sweep with a frame rotating about a 
knotted path. Figure 8 shows an unsmoothed and as-yet un-
realized design for a knotted form with nine cycles based on the 
{7,6,6} tessellation. Its sweep path is the simplest knotted path: a 
trefoil knot. The frequency and phase of the rotation was chosen 



so that the sculpture has a three-fold rotational symmetry axis. 
Repeated experimentation was necessary to find parameters 
which resulted in no self-intersections. 

 
Figure 8. Knotted Kelp, visualization. 

 
Figure 9. Cube’s twelve edges replaced by circular sectors. 

4.6 Polyhedral Forms 
The final technique presented here is to take an angular wedge of 
the Poincaré disk and use it to build spherical forms based on the 
edges of a polyhedron. A polyhedron edge subtends some angle 
when viewed from the center of the polyhedron. A circular 
segment of the same angle can fit into that angular space, as 
illustrated in Figure 9 for the twelve edges of a cube. In place of 
each circular wedge, we can use a sector of a tessellation in the 
Poincaré plane, to create an arrangement of segments. To 
maintain the polyhedral symmetry, the wedge in the Poincaré 
plane should have mirror symmetry and be of size 2π/n if the 

tessellation has n-fold symmetry. Note that the wedges we use 
and the original edges of the polyhedron need not span the 
identical central angle, because we can apply linear interpolation 
in θ as part of the mapping. So any size wedge of the Poincaré 
plane might be used, but to minimize distortion, one can select a 
symmetric wedge close in angle to the edge being replaced.  

For a richer form, we use an icosahedron and dodecahedron 
instead of a cube in the examples presented here. Two sculptures, 
both based on a wedges of the {5,4,5,4} tessellation, are shown in 
Figure 10. Again, a radial color gradient was hand applied. These 
delicate frameworks are in some ways reminiscent of Ernst 
Haeckel’s drawings of microscopic life forms. 

5. IMPLEMENTATION 
The algorithms described above were coded using Mathematica, 
which provides a convenient library of primitive functions but is 
not a high-performance environment. As currently coded—for the 
author’s experimental development rather than with efficient data 
structures—the more complex examples required several minutes 
to generate on a laptop PC. Careful recoding using a compiled 
language should reduce the execution time by a significant factor. 
A library of Mathematica functions for creating hyperbolic 
tessellations was used as the starting point [8]. Post-processing 
with Maya was used for subdivision smoothing. 

6. CONCLUSION 
Algorithmically generated sculptural forms were presented which 
incorporate patterns based on tessellations of the hyperbolic 
plane. Assorted transformations are used to map the Poincaré disk 
to 3D objects. By wrapping surfaces around segments in a water-
tight manner, high-genus sculptures are generated which have 
both a mathematical structure and an organic character. A robust 
toolbox with adjustable parameters is used to produce a variety of 
visually interesting 3D designs, suitable for building on solid 
freeform fabrication equipment. Their organic feel (and 
engineering strength) results in part from strut diameters that are 
proportional to length.  
There is no objective correctness criterion for this type of design. 
The final sculptures are considered to be successful if they pass 
the “coolness test,” that passers by stop and say “Wow, that’s 
cool!” then pick them up and turn them about in their hands to 
view them from many angles. By that criterion, this work has 
been observed to be successful. 
As a successful sculpture is difficult to capture from only one 
camera position, the images may not convey a complete sense of 
each form. The reader is invited to download the 3D models 
available at the website [6] and explore them in a 3D viewer, or 
better, build them on a local fabrication machine. 
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Figure 10. Polyhedral forms based on {5,4,5,4}, nylon, SLS, 4 inch diameter. (a) Icosahedral. (b) Dodecahedral. 
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